HISTORIA
Al comenzar la Revolución Industrial en Inglaterra durante el siglo XVII, se desarrollaron tornos capaces de dar forma a una pieza metálica. El desarrollo del torno pesado industrial para metales en el siglo XVIII hizo posible la producción en serie de piezas de precisión.
Hacia 1794 Henry Maudslay desarrollò el primer torno mecànico.
El torno paralelo o mecánico es el tipo de torno que evolucionó partiendo de los tornos antiguos cuando se le fueron incorporando nuevos equipamientos que lograron convertirlo en una de las máquina herramienta más importante que han existido.
Sin embargo en la actualidad este tipo de torno está quedando relegado a realizar tareas poco importantes a utilizarse en los talleres de aprendices y en los talleres de mantenimiento para realizar trabajos puntuales o especiales.
Para la fabricación en serie y de precisión han sido sustituidos por tornos copiadores, revólver, automáticos y de CNC. Para manejar bien estos tornos se requiere la pericia de profesionales muy bien calificados ya que el manejo manual de sus carros puede ocasionar errores a menudo en la geometría de las piezas torneadas.
Al comenzar la Revolución Industrial en Inglaterra durante el siglo XVII, se desarrollaron tornos capaces de dar forma a una pieza metálica. El desarrollo del torno pesado industrial para metales en el siglo XVIII hizo posible la producción en serie de piezas de precisión.
Hacia 1794 Henry Maudslay desarrollò el primer torno mecànico.
El torno paralelo o mecánico es el tipo de torno que evolucionó partiendo de los tornos antiguos cuando se le fueron incorporando nuevos equipamientos que lograron convertirlo en una de las máquina herramienta más importante que han existido.
Sin embargo en la actualidad este tipo de torno está quedando relegado a realizar tareas poco importantes a utilizarse en los talleres de aprendices y en los talleres de mantenimiento para realizar trabajos puntuales o especiales.
Para la fabricación en serie y de precisión han sido sustituidos por tornos copiadores, revólver, automáticos y de CNC. Para manejar bien estos tornos se requiere la pericia de profesionales muy bien calificados ya que el manejo manual de sus carros puede ocasionar errores a menudo en la geometría de las piezas torneadas.
DEFINICION
El torno es un conjunto de màquinas herramienta que permite mecanizar piezas de forma geomètrica de revoluciòn.
El torno paralelo es una máquina que trabaja en el plano porque solo tiene dos ejes de trabajo, ( Z y X) el carro que desplaza las herramientas a lo largo de la pieza y produce torneados cilíndricos, el carro transversal que se desplaza de forma perpendicular al eje de simetría de la pieza, con este carro se realiza la operación denominada refrentado. Lleva montado un tercer carro de accionamiento manual y giratorio llamado Charriot, montado sobre el carro transversal; con el Charriot inclinado a los grados necesarios es posible mecanizar conos.
El torno es un conjunto de màquinas herramienta que permite mecanizar piezas de forma geomètrica de revoluciòn.
El torno paralelo es una máquina que trabaja en el plano porque solo tiene dos ejes de trabajo, ( Z y X) el carro que desplaza las herramientas a lo largo de la pieza y produce torneados cilíndricos, el carro transversal que se desplaza de forma perpendicular al eje de simetría de la pieza, con este carro se realiza la operación denominada refrentado. Lleva montado un tercer carro de accionamiento manual y giratorio llamado Charriot, montado sobre el carro transversal; con el Charriot inclinado a los grados necesarios es posible mecanizar conos.
CLASES
1. Torno Paralelo
El torno paralelo o mecánico es el tipo de torno que evolucionó partiendo de los tornos antiguos cuando se le fueron incorporando nuevos equipamientos que lograron convertirlo en una de las máquinas herramienta más importante que han existido.
2. Torno Copiador
Se llama torno copiador a un tipo de torno que operando con un dispositivo hidráulico y electrónico permite el torneado de piezas de acuerdo a las características de la misma siguiendo el perfil de una plantilla que reproduce el perfil de la pieza.
Este tipo de tornos se utiliza para el torneado de aquellas piezas que tienen diferentes escalones de diámetros, que han sido previamente forjadas o fundidas y que tienen poco material excedente.
También son muy utilizados estos tornos en el trabajo de la madera y del mármol artístico para dar forma a las columnas embellecedoras.
La preparación para el mecanizado en un torno copiador es muy sencilla y rápida y por eso estas máquinas son muy útiles para mecanizar lotes o series de piezas que no sean muy grandes.
Las condiciones tecnológicas del mecanizado son comunes a las de los demás tornos, solamente hay que prever una herramienta que permita bien la evacuación de la viruta y un sistema de lubricación y refrigeración eficaz del filo de corte de las herramientas mediante abundante aceite de corte o taladrina.
3. Torno Revólver
El torno revólver es una variedad de torno diseñado para mecanizar piezas sobre las que sea posible el trabajo simultáneo de varias herramientas con el fin de disminuir el tiempo total de mecanizado.
Las piezas que presentan esa condición son aquellas que partiendo de barras tienen una forma final de casquillo o similar.
Una vez que la barra queda bien sujeta mediante pinzas o con un plato de garras se va taladrando, mandrinando, roscando o escariando la parte interior mecanizada y a la vez se puede ir cilindrando, refrentando, ranurando, roscando y cortando con herramientas de torneado exterior.
La característica principal del torno revólver es que lleva un carro con una torreta giratoria de forma hexagonal que ataca frontalmente a la pieza que se quiere mecanizar. En la torreta se insertan las diferentes herramientas que realizan el mecanizado de la pieza. Cada una de estas herramientas está controlada con un tope de final de carrera. También dispone de un carro transversal, donde se colocan las herramientas de segar, perfilar, ranurar, etc.
También se pueden mecanizar piezas de forma individual, fijándolas a un plato de garras de accionamiento hidráulico.
4. Torno automático
Se llama torno automático a un tipo de torno cuyo proceso de trabajo está enteramente automatizado. La alimentación de la barra necesaria para cada pieza se hace también de forma automática, a partir de una barra larga que se inserta por un tubo que tiene el cabezal y se sujeta mediante pinzas de apriete hidráulico.
Estos tornos pueden ser de un solo husillo o de varios husillos:
Los de un solo husillo se emplean básicamente para el mecanizado de piezas pequeñas que requieran grandes series de producción.
Cuando se trata de mecanizar piezas de dimensiones mayores se utilizan los tornos automáticos multihusillos donde de forma programada en cada husillo se va realizando una parte del mecanizado de la pieza. Como los husillos van cambiando de posición, el mecanizado final de la pieza resulta muy rápido porque todos los husillos mecanizan la misma pieza de forma simultánea.
La puesta a punto de estos tornos es muy laboriosa y por eso se utilizan principalmente para grandes series de producción. El movimiento de todas las herramientas está automatizado por un sistema de excéntricas y reguladores electrónicos que regulan el ciclo y los topes de final de carrera.
Un tipo de torno automático es el conocido como "tipo suizo", capaz de mecanizar piezas muy pequeñas con tolerancias muy estrechas.
5. Torno vertical
El torno vertical es una variedad de torno diseñado para mecanizar piezas de gran tamaño, que van sujetas al plato de garras u otros operadores y que por sus dimensiones o peso harían difícil su fijación en un torno horizontal.
Los tornos verticales tienen el eje dispuesto verticalmente y el plato giratorio sobre un plano horizontal, lo que facilita el montaje de las piezas voluminosas y pesadas. Es pues el tamaño lo que identifica a estas máquinas, permitiendo el mecanizado integral de piezas de gran tamaño.
En los tornos verticales no se pueden mecanizar piezas que vayan fijadas entre puntos porque carecen de contrapunta. Debemos tener en cuenta que la contrapunta se utiliza cuando la pieza es alargada, ya que cuando la herramienta esta arrancado la viruta ejerce una fuerza que puede hacer que flexione el material en esa zona y quede inutilizado. Dado que en esta maquina se mecanizan piezas de gran tamaño su único punto de sujeción es el plato sobre el cual va apoyado. La manipulación de las piezas para fijarlas en el plato se hace mediante grúas de puente o polipastos.
6.Torno CNC
El torno CNC es un tipo de torno operado mediante control numérico por computadora. Se caracteriza por ser una máquina herramienta muy eficaz para mecanizar piezas de revolución. Ofrece una gran capacidad de producción y precisión en el mecanizado por su estructura funcional y porque la trayectoria de la herramienta de torneado es controlada a través del ordenador que lleva incorporado, el cual procesa las órdenes de ejecución contenidas en un software que previamente ha confeccionado un programador conocedor de la tecnología de mecanizado en torno. Es una máquina ideal para el trabajo en serie y mecanizado de piezas complejas.
Otros tipos de tornos
Además de los tornos empleados en la industria mecánica, también se utilizan tornos para trabajar la madera, la ornamentación con mármol o granito.
El nombre de "torno" se aplica también a otras máquinas rotatorias como por ejemplo el torno de alfarero o el torno dental. Estas máquinas tienen una aplicación y un principio de funcionamiento totalmente diferentes de las de los tornos descritos en este artículo.
1. Torno Paralelo
El torno paralelo o mecánico es el tipo de torno que evolucionó partiendo de los tornos antiguos cuando se le fueron incorporando nuevos equipamientos que lograron convertirlo en una de las máquinas herramienta más importante que han existido.
2. Torno Copiador
Se llama torno copiador a un tipo de torno que operando con un dispositivo hidráulico y electrónico permite el torneado de piezas de acuerdo a las características de la misma siguiendo el perfil de una plantilla que reproduce el perfil de la pieza.
Este tipo de tornos se utiliza para el torneado de aquellas piezas que tienen diferentes escalones de diámetros, que han sido previamente forjadas o fundidas y que tienen poco material excedente.
También son muy utilizados estos tornos en el trabajo de la madera y del mármol artístico para dar forma a las columnas embellecedoras.
La preparación para el mecanizado en un torno copiador es muy sencilla y rápida y por eso estas máquinas son muy útiles para mecanizar lotes o series de piezas que no sean muy grandes.
Las condiciones tecnológicas del mecanizado son comunes a las de los demás tornos, solamente hay que prever una herramienta que permita bien la evacuación de la viruta y un sistema de lubricación y refrigeración eficaz del filo de corte de las herramientas mediante abundante aceite de corte o taladrina.
3. Torno Revólver
El torno revólver es una variedad de torno diseñado para mecanizar piezas sobre las que sea posible el trabajo simultáneo de varias herramientas con el fin de disminuir el tiempo total de mecanizado.
Las piezas que presentan esa condición son aquellas que partiendo de barras tienen una forma final de casquillo o similar.
Una vez que la barra queda bien sujeta mediante pinzas o con un plato de garras se va taladrando, mandrinando, roscando o escariando la parte interior mecanizada y a la vez se puede ir cilindrando, refrentando, ranurando, roscando y cortando con herramientas de torneado exterior.
La característica principal del torno revólver es que lleva un carro con una torreta giratoria de forma hexagonal que ataca frontalmente a la pieza que se quiere mecanizar. En la torreta se insertan las diferentes herramientas que realizan el mecanizado de la pieza. Cada una de estas herramientas está controlada con un tope de final de carrera. También dispone de un carro transversal, donde se colocan las herramientas de segar, perfilar, ranurar, etc.
También se pueden mecanizar piezas de forma individual, fijándolas a un plato de garras de accionamiento hidráulico.
4. Torno automático
Se llama torno automático a un tipo de torno cuyo proceso de trabajo está enteramente automatizado. La alimentación de la barra necesaria para cada pieza se hace también de forma automática, a partir de una barra larga que se inserta por un tubo que tiene el cabezal y se sujeta mediante pinzas de apriete hidráulico.
Estos tornos pueden ser de un solo husillo o de varios husillos:
Los de un solo husillo se emplean básicamente para el mecanizado de piezas pequeñas que requieran grandes series de producción.
Cuando se trata de mecanizar piezas de dimensiones mayores se utilizan los tornos automáticos multihusillos donde de forma programada en cada husillo se va realizando una parte del mecanizado de la pieza. Como los husillos van cambiando de posición, el mecanizado final de la pieza resulta muy rápido porque todos los husillos mecanizan la misma pieza de forma simultánea.
La puesta a punto de estos tornos es muy laboriosa y por eso se utilizan principalmente para grandes series de producción. El movimiento de todas las herramientas está automatizado por un sistema de excéntricas y reguladores electrónicos que regulan el ciclo y los topes de final de carrera.
Un tipo de torno automático es el conocido como "tipo suizo", capaz de mecanizar piezas muy pequeñas con tolerancias muy estrechas.
5. Torno vertical
El torno vertical es una variedad de torno diseñado para mecanizar piezas de gran tamaño, que van sujetas al plato de garras u otros operadores y que por sus dimensiones o peso harían difícil su fijación en un torno horizontal.
Los tornos verticales tienen el eje dispuesto verticalmente y el plato giratorio sobre un plano horizontal, lo que facilita el montaje de las piezas voluminosas y pesadas. Es pues el tamaño lo que identifica a estas máquinas, permitiendo el mecanizado integral de piezas de gran tamaño.
En los tornos verticales no se pueden mecanizar piezas que vayan fijadas entre puntos porque carecen de contrapunta. Debemos tener en cuenta que la contrapunta se utiliza cuando la pieza es alargada, ya que cuando la herramienta esta arrancado la viruta ejerce una fuerza que puede hacer que flexione el material en esa zona y quede inutilizado. Dado que en esta maquina se mecanizan piezas de gran tamaño su único punto de sujeción es el plato sobre el cual va apoyado. La manipulación de las piezas para fijarlas en el plato se hace mediante grúas de puente o polipastos.
6.Torno CNC
El torno CNC es un tipo de torno operado mediante control numérico por computadora. Se caracteriza por ser una máquina herramienta muy eficaz para mecanizar piezas de revolución. Ofrece una gran capacidad de producción y precisión en el mecanizado por su estructura funcional y porque la trayectoria de la herramienta de torneado es controlada a través del ordenador que lleva incorporado, el cual procesa las órdenes de ejecución contenidas en un software que previamente ha confeccionado un programador conocedor de la tecnología de mecanizado en torno. Es una máquina ideal para el trabajo en serie y mecanizado de piezas complejas.
Otros tipos de tornos
Además de los tornos empleados en la industria mecánica, también se utilizan tornos para trabajar la madera, la ornamentación con mármol o granito.
El nombre de "torno" se aplica también a otras máquinas rotatorias como por ejemplo el torno de alfarero o el torno dental. Estas máquinas tienen una aplicación y un principio de funcionamiento totalmente diferentes de las de los tornos descritos en este artículo.
PARTES
En el torno paralelo, como en todas las maquinas herramienta, podemos diferenciar dos partes fundamentales:
1. Los elementos componentes: Que agrupa los principales elementos que constituyen la maquina.
2. La cadena cinemática. que transmite el movimiento a la pieza y la cuchilla
El torno tiene cuatro componentes principales:
En el torno paralelo, como en todas las maquinas herramienta, podemos diferenciar dos partes fundamentales:
1. Los elementos componentes: Que agrupa los principales elementos que constituyen la maquina.
2. La cadena cinemática. que transmite el movimiento a la pieza y la cuchilla
El torno tiene cuatro componentes principales:
1. Bancada: sirve de soporte para las otras unidades del torno. En su parte superior lleva unas guías por las que se desplaza el cabezal móvil o contrapunto y el carro principal.
2.Cabezal fijo: contiene los engranajes o poleas que impulsan la pieza de trabajo y las unidades de avance. Incluye el motor, el husillo, el selector de velocidad, el selector de unidad de avance y el selector de sentido de avance. Además sirve para soporte y rotación de la pieza de trabajo que se apoya en el husillo.
3. Cabezal móvil: el contrapunto puede moverse y fijarse en diversas posiciones a lo largo. La función primaria es servir de apoyo al borde externo de la pieza de trabajo.
El cabezal móvil o contracabezal esta apoyado sobre las guías de la bancada y se puede desplazar manualmente a lo largo de ellas según la longitud de la pieza a mecanizar, llevado al punto deseado se bloquea su posición con la palanca (T6).
Mediante el volante (T1) se puede avanzar o retroceder el contrapunto (T5) sobre el cuerpo del contracabezal (T3), este desplazamiento se puede bloquear impidiendo que retroceda con la palanca (T2).
En este contracabezal la base (T4) y el cuerpo (T3) son piezas distintas fijadas una a otra mediante tornillos, que pueden ser aflojados y permitir un cierto desplazamiento transversal del cuerpo respecto a su base, esta operación se puede hacer para mecanizar conos de pequeño ángulo de inclinación.
3. Cabezal móvil: el contrapunto puede moverse y fijarse en diversas posiciones a lo largo. La función primaria es servir de apoyo al borde externo de la pieza de trabajo.
El cabezal móvil o contracabezal esta apoyado sobre las guías de la bancada y se puede desplazar manualmente a lo largo de ellas según la longitud de la pieza a mecanizar, llevado al punto deseado se bloquea su posición con la palanca (T6).
Mediante el volante (T1) se puede avanzar o retroceder el contrapunto (T5) sobre el cuerpo del contracabezal (T3), este desplazamiento se puede bloquear impidiendo que retroceda con la palanca (T2).
En este contracabezal la base (T4) y el cuerpo (T3) son piezas distintas fijadas una a otra mediante tornillos, que pueden ser aflojados y permitir un cierto desplazamiento transversal del cuerpo respecto a su base, esta operación se puede hacer para mecanizar conos de pequeño ángulo de inclinación.
4. Carros portaherramientas: consta del carro principal, que produce los movimientos de avance y profundidad de pasada, el carro transversal, que se desliza transversalmente sobre el carro principal, y el carro superior orientable, formado a su vez por tres piezas: la base, el charriot y el portaherramientas. Su base está apoyada sobre una plataforma giratoria para orientarlo en cualquier dirección.
Detalle del carro potaherramientas
En la imagen se puede ver en detalle el carro de un torno paralelo, el carro principal (4) esta apoyado sobre las guías de la bancada y se mueve longitudinalmente por ellas,
En la parte delantera esta el cuadro de mecanismos (5) el volante (5a) permite desplazarlo manualmente a derecha o izquierda, el embrague de roscar (5b) tiene dos posiciones desembragado o embragado en esta posición al carro se mueve longitudinalmente a velocidad constante por el husillo de roscar. El embrague de cilindrar (5c) tiene tres posiciones cilindrar desembragado y refrentar, la velocidad de avance vendrá fijada por el husillo de cilindrar. En este panel de mandos se puede conectar uno u otro automático, pero no se puede modificar ni la velocidad de avance ni el sentido del movimiento que tendrá que fijarse en la caja de avances y transmitido al carro mediante el husillo de roscar o de cilindrar según corresponda.
El carro transversal (3) esta montado y ajustado en cola de milano sobre el caro longitudinal y se puede desplazar transversalmente, de forma manual con la manivela (3b) o en automático refrentando.
Sobre el carro transversal esta el carro orientable (2) este carro se puede girar sobre si mismo un ángulo cualesquiera marcado en la escala (2b), mediante la manivela (2a) este carro se puede avanzar o retroceder.
Sobre el carro orientable, esta la toreta portaherramientas (1) donde se monta la cuchilla
La cadena cinemática genera, trasmite y regula los movimientos de los elementos del torno, según las operaciones ha realizar.
Detalle del carro potaherramientas
En la imagen se puede ver en detalle el carro de un torno paralelo, el carro principal (4) esta apoyado sobre las guías de la bancada y se mueve longitudinalmente por ellas,
En la parte delantera esta el cuadro de mecanismos (5) el volante (5a) permite desplazarlo manualmente a derecha o izquierda, el embrague de roscar (5b) tiene dos posiciones desembragado o embragado en esta posición al carro se mueve longitudinalmente a velocidad constante por el husillo de roscar. El embrague de cilindrar (5c) tiene tres posiciones cilindrar desembragado y refrentar, la velocidad de avance vendrá fijada por el husillo de cilindrar. En este panel de mandos se puede conectar uno u otro automático, pero no se puede modificar ni la velocidad de avance ni el sentido del movimiento que tendrá que fijarse en la caja de avances y transmitido al carro mediante el husillo de roscar o de cilindrar según corresponda.
El carro transversal (3) esta montado y ajustado en cola de milano sobre el caro longitudinal y se puede desplazar transversalmente, de forma manual con la manivela (3b) o en automático refrentando.
Sobre el carro transversal esta el carro orientable (2) este carro se puede girar sobre si mismo un ángulo cualesquiera marcado en la escala (2b), mediante la manivela (2a) este carro se puede avanzar o retroceder.
Sobre el carro orientable, esta la toreta portaherramientas (1) donde se monta la cuchilla
La cadena cinemática genera, trasmite y regula los movimientos de los elementos del torno, según las operaciones ha realizar.
Detalle de los mandos de la caja de velocidades y avances
Motor: normalmente eléctrico, que genera el movimiento y esfuerzo de mecanizado.
Caja de velocidades: con la que se determina la velocidad y el sentido de giro del eje del trono (H4), partiendo del eje del motor que gira a velocidad constante.
En la imagen se puede ver el cabezal de un torno, el eje principal sobre el que esta montado el plato (H4), las palancas de la caja de velocidades e inversor de giro (H2) (H3) y (H5).
Caja de avances: con la que se establecen las distintas velocidades de avance de los carros, partiendo del movimiento del eje del torno. Recuérdese que los avances en el torno son en milímetros de avance por revolución del plato del torno.
En la imagen se puede ver en la parte posterior (H10), la caja de la lira, que conecta la parte posterior del eje del torno con la caja de avances (H6), la lira que no se ve en la imagen, determina la relación de transmisión entre el eje principal y la caja de avances mediante engranajes desmontables.
Ejes de avances: que trasmiten el movimiento de avance de la caja de avances al carro principal, suelen ser dos:
Eje de cilindrar (H8), ranurado para trasmitir un movimiento rotativo a los mecanismos del carro principal, este movimiento se emplea tanto para el desplazamiento longitudinal del carro principal, como para el transversal del carro transversal.
Eje de roscar (H7), roscado en toda la longitud que puede estar en contacto con el carro, el embrague de roscar es una tuerca partida que abraza este eje cuando está embragado, los avances con este eje son más rápidos que con el de cilindrar, y se emplea como su nombre indica en las operaciones de roscado.
En la imagen se puede ver un tercer eje (H9) con una palanca de empuñadura roja junto a la caja de avances, este tercer eje no existe en todos los modelos de torno y permite, mediante un conmutador, poner el motor eléctrico en marcha o invertir su sentido de giro, otra u otras dos palancas similares están en el carro principal, a uno u otro lado, que permiten girar este eje colocando en las tres posiciones giro a derecha, parado o izquierda. En los modelos de torno que no disponen de este tercer eje, la puesta en marcha se hace mediante pulsadores eléctricos situados normalmente en la parte superior del cabezal
ACCESORIOS
Se requieren ciertos accesorios, como sujetadores para la pieza de trabajo, soportes y portaherramientas.
Algunos accesorios comunes incluyen
- Plato de sujeción de garras: sujeta la pieza de trabajo en el cabezal y transmite el movimiento.
- Centros: soportan la pieza de trabajo en el cabezal y en la contrapunta.
- Perno de arrastre: se fija en el plato de torno y en la pieza de trabajo y le transmite el movimiento a la pieza cuando está montada entre centros.
- Soporte fijo o luneta fija: soporta el extremo extendido de la pieza de trabajo cuando no puede usarse la contrapunta.
- Soporte móvil o luneta móvil: se monta en el carro y permite soportar piezas de trabajo largas cerca del punto de corte.
-Torreta portaherramientas con alineación múltiple.
VELOCIDADES DE CORTE Y AVANCE
Caja de velocidades: con la que se determina la velocidad y el sentido de giro del eje del trono (H4), partiendo del eje del motor que gira a velocidad constante.
En la imagen se puede ver el cabezal de un torno, el eje principal sobre el que esta montado el plato (H4), las palancas de la caja de velocidades e inversor de giro (H2) (H3) y (H5).
Caja de avances: con la que se establecen las distintas velocidades de avance de los carros, partiendo del movimiento del eje del torno. Recuérdese que los avances en el torno son en milímetros de avance por revolución del plato del torno.
En la imagen se puede ver en la parte posterior (H10), la caja de la lira, que conecta la parte posterior del eje del torno con la caja de avances (H6), la lira que no se ve en la imagen, determina la relación de transmisión entre el eje principal y la caja de avances mediante engranajes desmontables.
Ejes de avances: que trasmiten el movimiento de avance de la caja de avances al carro principal, suelen ser dos:
Eje de cilindrar (H8), ranurado para trasmitir un movimiento rotativo a los mecanismos del carro principal, este movimiento se emplea tanto para el desplazamiento longitudinal del carro principal, como para el transversal del carro transversal.
Eje de roscar (H7), roscado en toda la longitud que puede estar en contacto con el carro, el embrague de roscar es una tuerca partida que abraza este eje cuando está embragado, los avances con este eje son más rápidos que con el de cilindrar, y se emplea como su nombre indica en las operaciones de roscado.
En la imagen se puede ver un tercer eje (H9) con una palanca de empuñadura roja junto a la caja de avances, este tercer eje no existe en todos los modelos de torno y permite, mediante un conmutador, poner el motor eléctrico en marcha o invertir su sentido de giro, otra u otras dos palancas similares están en el carro principal, a uno u otro lado, que permiten girar este eje colocando en las tres posiciones giro a derecha, parado o izquierda. En los modelos de torno que no disponen de este tercer eje, la puesta en marcha se hace mediante pulsadores eléctricos situados normalmente en la parte superior del cabezal
ACCESORIOS
Se requieren ciertos accesorios, como sujetadores para la pieza de trabajo, soportes y portaherramientas.
Algunos accesorios comunes incluyen
- Plato de sujeción de garras: sujeta la pieza de trabajo en el cabezal y transmite el movimiento.
- Centros: soportan la pieza de trabajo en el cabezal y en la contrapunta.
- Perno de arrastre: se fija en el plato de torno y en la pieza de trabajo y le transmite el movimiento a la pieza cuando está montada entre centros.
- Soporte fijo o luneta fija: soporta el extremo extendido de la pieza de trabajo cuando no puede usarse la contrapunta.
- Soporte móvil o luneta móvil: se monta en el carro y permite soportar piezas de trabajo largas cerca del punto de corte.
-Torreta portaherramientas con alineación múltiple.
VELOCIDADES DE CORTE Y AVANCE
1. Velocidad de corte (sistema métrico)
El cabezal fijo del torno está construido de tal modo que permita el cambio de velocidad del husillo ya sea por medio de una polea escalonada accionada por banda o por un mecanismo de cabezal de engranes. Puede obtenerse un cambio de velocidad en la polea escalonada accionada por banda, pasando ésta a otro escalón de la polea. Las velocidades más bajas se obtienen interponiendo engranajes reductores. En los nuevos tipos de cabezal de engranajes, los cambios de velocidad pueden obtenerse modificando la posición de los engranajes en el cabezal fijo.
La velocidad de corte para un material no cambia, sino que permanece constante mientras que las revoluciones por minuto, o velocidad del husillo del torno pueden aumentar o disminuir de acuerdo con el diámetro de la pieza. Los factores que determinan la velocidad de corte son: el tipo y la dureza del material, el diámetro de la pieza, el material del que está hecha la herramienta de corte, la forma de la herramienta y la profundidad del corte.
Se recomiendan cortes anchos y bajas velocidades para corte de desbaste, con el fin de evitar el desgaste de los bordes cortantes de la herramienta y las pérdidas de tiempo. La velocidad del husillo se aumenta generalmente para cortes de acabado y se disminuye el avance.
Las velocidades de corte para trabajos de torneado se expresan en pies por minuto o metros por minuto. La velocidad de corte es el número de pies (metro) que pasan por el filo de la herramienta en un minuto, midiendo sobre la circunferencia de la pieza.
Las velocidades de corte de la tabla disminuyen, aproximadamente, en el 50% cuando se utilizan herramientas de acero al carbono.
La velocidad de corte en pies o en metros por minuto, puede calcularse multiplicándole diámetro de la pieza en pulgadas (o en milímetros) por 3.14 y por el número de revoluciones por minuto (RPM) y dividiendo luego el producto por 12 o por 1000.
Puesto que la velocidad de corte se expresa para cada particular de material o pieza que deba tornearse, es necesario calcular la velocidad apropiada del husillo para el diámetro de la pieza. Las RPM pueden determinarse multiplicando la velocidad de corte por 12 y dividiendo el producto por 3.14 veces el diámetro del trabajo en pulgadas.
Se utiliza la velocidad del husillo más cercano posible a las RPM calculadas.
Un método mas sencillo para calcular las revoluciones por minuto ( para determinar el número aproximado de revoluciones por minuto), es multiplicar la velocidad de corte en pies por 4 y dividirla por el diámetro de la pieza en pulgadas.
La fórmula utilizada en el laboratorio es: (mm/min) ó (m/min), donde d es el diámetro de la pieza en giro y N es el número de revoluciones por minuto.
· Velocidad de avance (sistema métrico)
El avance depende de la rigidez de la pieza y de la forma en que esté sujeta la máquina, la rigidez y la forma de la herramienta de corte y la velocidad de corte.
Alimentación es lo que avanza la herramienta en cada revolución de la pieza de trabajo. El avance se concibe como la anchura de la viruta metálica del corte. Por ejemplo, si se emplea un avance de 1/64 de pulgada (0.04 cm) para tornear un cilindro serán necesarias 64 revoluciones de la pieza para que la herramienta avance una pulgada. La anchura de la viruta metálica será de 1/64”.
La cantidad de avance depende de numerosos factores: el de material que está siendo torneado, la velocidad de corte para la pieza de trabajo, la profundidad de corte y la herramienta empleada. Para cortes de desbaste, el avance deberá ser tan grande como lo admita la máquina y resista la herramienta de corte. Para cortes de acabado, la cantidad de avance disminuirá, dependiendo ello del acabado que se desee.
· Tiempo de corte (sistema métrico)
La fórmula utilizada en el laboratorio es: ,donde
a: avance, en milímetros.
N: número de revoluciones por minuto.
Ejemplo:
Calcular el tiempo requerido para hacer un corte de acabado con avance de 0.010 mm., en una pieza de acero de máquina de 250 mm de longitud por 30 mm. de diámetro.
t = 7.8 min
Operaciones de Torneado
1. Cilindrado
Esta operación consiste en la mecanización exterior a la que se somete a las piezas que tienen mecanizados cilíndricos. Para poder efectuar esta operación, con el carro transversal se regula la profundidad de pasada y, por tanto, el diámetro del cilindro, y con el carro paralelo se regula la longitud del cilindro. El carro paralelo avanza de forma automática de acuerdo al avance de trabajo deseado. En este procedimiento el acabado superficial y la tolerancia que se obtenga puede ser un factor de gran relevancia. Para asegurar calidad al cilindrado el torno tiene que tener bien ajustada su alineación y concentricidad.
El cilindrado se puede hacer con la pieza al aire sujeta en el plato de garras, si es corta, o con la pieza sujeta entre puntos y un perro de arrastre, o apoyada en luneta fija o móvil si la pieza es de grandes dimensiones y peso. Para realizar el cilindrado de piezas o ejes sujetos entre puntos, es necesario previamente realizar los puntos de centraje en los ejes.
Cuando el cilindrado se realiza en el hueco de la pieza se llama mandrinado.
El cabezal fijo del torno está construido de tal modo que permita el cambio de velocidad del husillo ya sea por medio de una polea escalonada accionada por banda o por un mecanismo de cabezal de engranes. Puede obtenerse un cambio de velocidad en la polea escalonada accionada por banda, pasando ésta a otro escalón de la polea. Las velocidades más bajas se obtienen interponiendo engranajes reductores. En los nuevos tipos de cabezal de engranajes, los cambios de velocidad pueden obtenerse modificando la posición de los engranajes en el cabezal fijo.
La velocidad de corte para un material no cambia, sino que permanece constante mientras que las revoluciones por minuto, o velocidad del husillo del torno pueden aumentar o disminuir de acuerdo con el diámetro de la pieza. Los factores que determinan la velocidad de corte son: el tipo y la dureza del material, el diámetro de la pieza, el material del que está hecha la herramienta de corte, la forma de la herramienta y la profundidad del corte.
Se recomiendan cortes anchos y bajas velocidades para corte de desbaste, con el fin de evitar el desgaste de los bordes cortantes de la herramienta y las pérdidas de tiempo. La velocidad del husillo se aumenta generalmente para cortes de acabado y se disminuye el avance.
Las velocidades de corte para trabajos de torneado se expresan en pies por minuto o metros por minuto. La velocidad de corte es el número de pies (metro) que pasan por el filo de la herramienta en un minuto, midiendo sobre la circunferencia de la pieza.
Las velocidades de corte de la tabla disminuyen, aproximadamente, en el 50% cuando se utilizan herramientas de acero al carbono.
La velocidad de corte en pies o en metros por minuto, puede calcularse multiplicándole diámetro de la pieza en pulgadas (o en milímetros) por 3.14 y por el número de revoluciones por minuto (RPM) y dividiendo luego el producto por 12 o por 1000.
Puesto que la velocidad de corte se expresa para cada particular de material o pieza que deba tornearse, es necesario calcular la velocidad apropiada del husillo para el diámetro de la pieza. Las RPM pueden determinarse multiplicando la velocidad de corte por 12 y dividiendo el producto por 3.14 veces el diámetro del trabajo en pulgadas.
Se utiliza la velocidad del husillo más cercano posible a las RPM calculadas.
Un método mas sencillo para calcular las revoluciones por minuto ( para determinar el número aproximado de revoluciones por minuto), es multiplicar la velocidad de corte en pies por 4 y dividirla por el diámetro de la pieza en pulgadas.
La fórmula utilizada en el laboratorio es: (mm/min) ó (m/min), donde d es el diámetro de la pieza en giro y N es el número de revoluciones por minuto.
· Velocidad de avance (sistema métrico)
El avance depende de la rigidez de la pieza y de la forma en que esté sujeta la máquina, la rigidez y la forma de la herramienta de corte y la velocidad de corte.
Alimentación es lo que avanza la herramienta en cada revolución de la pieza de trabajo. El avance se concibe como la anchura de la viruta metálica del corte. Por ejemplo, si se emplea un avance de 1/64 de pulgada (0.04 cm) para tornear un cilindro serán necesarias 64 revoluciones de la pieza para que la herramienta avance una pulgada. La anchura de la viruta metálica será de 1/64”.
La cantidad de avance depende de numerosos factores: el de material que está siendo torneado, la velocidad de corte para la pieza de trabajo, la profundidad de corte y la herramienta empleada. Para cortes de desbaste, el avance deberá ser tan grande como lo admita la máquina y resista la herramienta de corte. Para cortes de acabado, la cantidad de avance disminuirá, dependiendo ello del acabado que se desee.
· Tiempo de corte (sistema métrico)
La fórmula utilizada en el laboratorio es: ,donde
a: avance, en milímetros.
N: número de revoluciones por minuto.
Ejemplo:
Calcular el tiempo requerido para hacer un corte de acabado con avance de 0.010 mm., en una pieza de acero de máquina de 250 mm de longitud por 30 mm. de diámetro.
t = 7.8 min
Operaciones de Torneado
1. Cilindrado
Esta operación consiste en la mecanización exterior a la que se somete a las piezas que tienen mecanizados cilíndricos. Para poder efectuar esta operación, con el carro transversal se regula la profundidad de pasada y, por tanto, el diámetro del cilindro, y con el carro paralelo se regula la longitud del cilindro. El carro paralelo avanza de forma automática de acuerdo al avance de trabajo deseado. En este procedimiento el acabado superficial y la tolerancia que se obtenga puede ser un factor de gran relevancia. Para asegurar calidad al cilindrado el torno tiene que tener bien ajustada su alineación y concentricidad.
El cilindrado se puede hacer con la pieza al aire sujeta en el plato de garras, si es corta, o con la pieza sujeta entre puntos y un perro de arrastre, o apoyada en luneta fija o móvil si la pieza es de grandes dimensiones y peso. Para realizar el cilindrado de piezas o ejes sujetos entre puntos, es necesario previamente realizar los puntos de centraje en los ejes.
Cuando el cilindrado se realiza en el hueco de la pieza se llama mandrinado.
2. Refrentado
La operación de refrentado consiste en un mecanizado frontal y perpendicular al eje de las piezas que se realiza para producir un buen acoplamiento en el montaje posterior de las piezas torneadas. Esta operación también es conocida como fronteado. La problemática que tiene el refrentado es que la velocidad de corte en el filo de la herramienta va disminuyendo a medida que avanza hacia el centro, lo que ralentiza la operación. Para mejorar este aspecto muchos tornos modernos incorporan variadores de velocidad en el cabezal de tal forma que se puede ir aumentando la velocidad de giro de la pieza.
3. Ranurado
El ranurado consiste en mecanizar unas ranuras cilíndricas de anchura y profundidad variable en las piezas que se tornean, las cuales tienen muchas utilidades diferentes. Por ejemplo, para alojar una junta tórica, para salida de rosca, para arandelas de presión, etc. En este caso la herramienta tiene ya conformado el ancho de la ranura y actuando con el carro transversal se le da la profundidad deseada. Los canales de las poleas son un ejemplo claro de ranuras torneadas.
4. Roscado en el torno
Hay dos sistemas de realizar roscados en los tornos, de un lado la tradicional que utilizan los tornos paralelos, mediante la Caja Norton, y de otra la que se realiza con los tornos CNC, donde los datos de la roscas van totalmente programados y ya no hace falta la caja Norton para realizarlo.
Para efectuar un roscado con herramienta hay que tener en cuenta lo siguiente:
- Las roscas pueden ser exteriores (tornillos) o bien interiores (tuercas), debiendo ser sus magnitudes coherentes para que ambos elementos puedan enroscarse.
- Los elementos que figuran en la tabla son los que hay que tener en cuenta a la hora de realizar una rosca en un torno:
Para efectuar el roscado hay que realizar previamente las siguientes tareas:
Tornear previamente al diámetro que tenga la rosca
Preparar la herramienta de acuerdo con los ángulos del filete de la rosca.
Establecer la profundidad de pasada que tenga que tener la rosca hasta conseguir el perfil adecuado.
5. Roscado en torno paralelo
Una de las tareas que pueden ejecutarse en un torno paralelo es efectuar roscas de diversos pasos y tamaños tanto exteriores sobre ejes o interiores sobre tuercas. Para ello los tornos paralelos universales incorporan un mecanismo llamado “caja Norton”, que facilita esta tarea y evita montar un tren de engranajes cada vez que se quisiera efectuar una rosca.
La caja Norton es un mecanismo compuesto de varios engranajes que fue inventado y patentado en 1890, que se incorpora a los tornos paralelos y dio solución al cambio manual de engranajes para fijar los pasos de las piezas a roscar. Esta caja puede constar de varios trenes desplazables de engranajes o bien de uno basculante y un cono de engranajes. La caja conecta el movimiento del cabezal del torno con el carro portaherramientas que lleva incorporado un husillo de rosca cuadrada.
El sistema mejor conseguido incluye una caja de cambios con varias reductoras. De esta manera con la manipulación de varias palancas se pueden fijar distintas velocidades de avance de carro portaherramientas, permitiendo realizar una gran variedad de pasos de rosca tanto métricos como withworth. Las hay en baño de aceite y en seco, de engranajes tallados de una forma u otra, pero básicamente es una caja de cambios.
6. Moleteado
La operación de refrentado consiste en un mecanizado frontal y perpendicular al eje de las piezas que se realiza para producir un buen acoplamiento en el montaje posterior de las piezas torneadas. Esta operación también es conocida como fronteado. La problemática que tiene el refrentado es que la velocidad de corte en el filo de la herramienta va disminuyendo a medida que avanza hacia el centro, lo que ralentiza la operación. Para mejorar este aspecto muchos tornos modernos incorporan variadores de velocidad en el cabezal de tal forma que se puede ir aumentando la velocidad de giro de la pieza.
3. Ranurado
El ranurado consiste en mecanizar unas ranuras cilíndricas de anchura y profundidad variable en las piezas que se tornean, las cuales tienen muchas utilidades diferentes. Por ejemplo, para alojar una junta tórica, para salida de rosca, para arandelas de presión, etc. En este caso la herramienta tiene ya conformado el ancho de la ranura y actuando con el carro transversal se le da la profundidad deseada. Los canales de las poleas son un ejemplo claro de ranuras torneadas.
4. Roscado en el torno
Hay dos sistemas de realizar roscados en los tornos, de un lado la tradicional que utilizan los tornos paralelos, mediante la Caja Norton, y de otra la que se realiza con los tornos CNC, donde los datos de la roscas van totalmente programados y ya no hace falta la caja Norton para realizarlo.
Para efectuar un roscado con herramienta hay que tener en cuenta lo siguiente:
- Las roscas pueden ser exteriores (tornillos) o bien interiores (tuercas), debiendo ser sus magnitudes coherentes para que ambos elementos puedan enroscarse.
- Los elementos que figuran en la tabla son los que hay que tener en cuenta a la hora de realizar una rosca en un torno:
Para efectuar el roscado hay que realizar previamente las siguientes tareas:
Tornear previamente al diámetro que tenga la rosca
Preparar la herramienta de acuerdo con los ángulos del filete de la rosca.
Establecer la profundidad de pasada que tenga que tener la rosca hasta conseguir el perfil adecuado.
5. Roscado en torno paralelo
Una de las tareas que pueden ejecutarse en un torno paralelo es efectuar roscas de diversos pasos y tamaños tanto exteriores sobre ejes o interiores sobre tuercas. Para ello los tornos paralelos universales incorporan un mecanismo llamado “caja Norton”, que facilita esta tarea y evita montar un tren de engranajes cada vez que se quisiera efectuar una rosca.
La caja Norton es un mecanismo compuesto de varios engranajes que fue inventado y patentado en 1890, que se incorpora a los tornos paralelos y dio solución al cambio manual de engranajes para fijar los pasos de las piezas a roscar. Esta caja puede constar de varios trenes desplazables de engranajes o bien de uno basculante y un cono de engranajes. La caja conecta el movimiento del cabezal del torno con el carro portaherramientas que lleva incorporado un husillo de rosca cuadrada.
El sistema mejor conseguido incluye una caja de cambios con varias reductoras. De esta manera con la manipulación de varias palancas se pueden fijar distintas velocidades de avance de carro portaherramientas, permitiendo realizar una gran variedad de pasos de rosca tanto métricos como withworth. Las hay en baño de aceite y en seco, de engranajes tallados de una forma u otra, pero básicamente es una caja de cambios.
6. Moleteado
El moleteado es un proceso de conformado en frío del material mediante unas moletas que presionan la pieza mientras da vueltas. Dicha deformación produce un incremento del diámetro de partida de la pieza. El moleteado se realiza en piezas que se tengan que manipular a mano, que generalmente vayan roscadas para evitar su resbalamiento que tendrían en caso de que tuviesen la superficie lisa.
El moleteado se realiza en los tornos con unas herramientas que se llaman moletas, de diferente paso y dibujo.
Un ejemplo de moleteado es el que tienen las monedas de 50 céntimos de euro, aunque en este caso el moleteado es para que los invidentes puedan identificar mejor la moneda.
El moleteado por deformación se puede ejecutar de dos maneras:
Radialmente, cuando la longitud moleteada en la pieza coincide con el espesor de la moleta a utilizar.
Longitudinalmente, cuando la longitud excede al espesor de la moleta. Para este segundo caso la moleta siempre ha de estar biselada en sus extremos.
7. Torneado de Conos
Un cono o un tronco de cono de un cuerpo de generación viene definido por los siguientes conceptos:
- Diámetro mayor
- Diámetro menor
- Longitud
- Ángulo de inclinación
- Conicidad
- Pinzas cónicas portaherramientas.
El moleteado se realiza en los tornos con unas herramientas que se llaman moletas, de diferente paso y dibujo.
Un ejemplo de moleteado es el que tienen las monedas de 50 céntimos de euro, aunque en este caso el moleteado es para que los invidentes puedan identificar mejor la moneda.
El moleteado por deformación se puede ejecutar de dos maneras:
Radialmente, cuando la longitud moleteada en la pieza coincide con el espesor de la moleta a utilizar.
Longitudinalmente, cuando la longitud excede al espesor de la moleta. Para este segundo caso la moleta siempre ha de estar biselada en sus extremos.
7. Torneado de Conos
Un cono o un tronco de cono de un cuerpo de generación viene definido por los siguientes conceptos:
- Diámetro mayor
- Diámetro menor
- Longitud
- Ángulo de inclinación
- Conicidad
- Pinzas cónicas portaherramientas.
Los diferentes tornos mecanizan los conos de formas diferentes.
- En los tornos CNC no hay ningún problema porque, programando adecuadamente sus dimensiones, los carros transversales y longitudinales se desplazan de forma coordinada dando lugar al cono deseado.
- En los tornos copiadores tampoco hay problema porque la plantilla de copiado permite que el palpador se desplace por la misma y los carros actúen de forma coordinada.
- Para mecanizar conos en los tornos paralelos convencionales se puede hacer de dos formas diferentes. Si la longitud del cono es pequeña, se mecaniza el cono con el charriot inclinado según el ángulo del cono. Si la longitud del cono es muy grande y el eje se mecaniza entre puntos, entonces se desplaza la distancia adecuada el contrapunto según las dimensiones del cono.
8. Torneado esférico
El torneado esférico, por ejemplo el de rótulas, no tiene ninguna dificultad si se realiza en un torno de Control Numérico porque, programando sus medidas y la función de mecanizado radial correspondiente, lo realizará de forma perfecta.
Si el torno es automático de gran producción, trabaja con barra y las rótulas no son de gran tamaño, la rotula se consigue con un carro transversal donde las herramientas están afiladas con el perfil de la rótula.
Hacer rótulas de forma manual en un torno paralelo presenta cierta dificultad para conseguir exactitud en la misma. En ese caso es recomendable disponer de una plantilla de la esfera e irla mecanizando de forma manual y acabarla con lima o rasqueta para darle el ajuste final.
9. Segado o Tronzado
- En los tornos CNC no hay ningún problema porque, programando adecuadamente sus dimensiones, los carros transversales y longitudinales se desplazan de forma coordinada dando lugar al cono deseado.
- En los tornos copiadores tampoco hay problema porque la plantilla de copiado permite que el palpador se desplace por la misma y los carros actúen de forma coordinada.
- Para mecanizar conos en los tornos paralelos convencionales se puede hacer de dos formas diferentes. Si la longitud del cono es pequeña, se mecaniza el cono con el charriot inclinado según el ángulo del cono. Si la longitud del cono es muy grande y el eje se mecaniza entre puntos, entonces se desplaza la distancia adecuada el contrapunto según las dimensiones del cono.
8. Torneado esférico
El torneado esférico, por ejemplo el de rótulas, no tiene ninguna dificultad si se realiza en un torno de Control Numérico porque, programando sus medidas y la función de mecanizado radial correspondiente, lo realizará de forma perfecta.
Si el torno es automático de gran producción, trabaja con barra y las rótulas no son de gran tamaño, la rotula se consigue con un carro transversal donde las herramientas están afiladas con el perfil de la rótula.
Hacer rótulas de forma manual en un torno paralelo presenta cierta dificultad para conseguir exactitud en la misma. En ese caso es recomendable disponer de una plantilla de la esfera e irla mecanizando de forma manual y acabarla con lima o rasqueta para darle el ajuste final.
9. Segado o Tronzado
Herramienta de ranurar y segar.
Se llama segado a la operación de torneado que se realiza cuando se trabaja con barra y al finalizar el mecanizado de la pieza correspondiente es necesario cortar la barra para separar la pieza de la misma. Para esta operación se utilizan herramientas muy estrechas con un saliente de acuerdo al diámetro que tenga la barra y permita con el carro transversal llegar al centro de la barra. Es una operación muy común en tornos revólver y automáticos alimentados con barra y fabricaciones en serie.
10. Chaflanado
El chaflanado es una operación de torneado muy común que consiste en matar los cantos tanto exteriores como interiores para evitar cortes con los mismos y a su vez facilitar el trabajo y montaje posterior de las piezas. El chaflanado más común suele ser el de 1mm por 45º. Este chaflán se hace atacando directamente los cantos con una herramienta adecuada.
11. Mecanizado de excéntricas
Se llama segado a la operación de torneado que se realiza cuando se trabaja con barra y al finalizar el mecanizado de la pieza correspondiente es necesario cortar la barra para separar la pieza de la misma. Para esta operación se utilizan herramientas muy estrechas con un saliente de acuerdo al diámetro que tenga la barra y permita con el carro transversal llegar al centro de la barra. Es una operación muy común en tornos revólver y automáticos alimentados con barra y fabricaciones en serie.
10. Chaflanado
El chaflanado es una operación de torneado muy común que consiste en matar los cantos tanto exteriores como interiores para evitar cortes con los mismos y a su vez facilitar el trabajo y montaje posterior de las piezas. El chaflanado más común suele ser el de 1mm por 45º. Este chaflán se hace atacando directamente los cantos con una herramienta adecuada.
11. Mecanizado de excéntricas
Cigüeñales excéntricos.
Una excéntrica es una pieza que tiene dos o más cilindros con distintos centros o ejes de simetría, tal y como ocurre con los cigüeñales de motor, o los ejes de levas. Una excéntrica es un cuerpo de revolución y por tanto el mecanizado se realiza en un torno. Para mecanizar una excéntrica es necesario primero realizar los puntos de centraje de los diferentes ejes excéntricos en los extremos de la pieza que se fijará entre puntos.
12. Mecanizado de espirales
Una espiral es una rosca tallada en un disco plano y mecanizada en un torno, mediante el desplazamiento oportuno del carro transversal. Para ello se debe calcular la transmisión que se pondrá entre el cabezal y el husillo de avance del carro transversal de acuerdo al paso de la rosca espiral. Es una operación poco común en el torneado. Ejemplo de rosca espiral es la que tienen en su interior los platos de garras de los tornos, la cual permite la apertura y cierre de las garras.
13. Taladrado
Contrapunto para taladrados.
Muchas piezas que son torneadas requieren ser taladradas con brocas en el centro de sus ejes de rotación. Para esta tarea se utilizan brocas normales, que se sujetan en el contrapunto en un portabrocas o directamente en el alojamiento del contrapunto si el diámetro es grande. Las condiciones tecnológicas del taladrado son las normales de acuerdo a las características del material y tipo de broca que se utilice. Mención aparte merecen los procesos de taladrado profundo donde el proceso ya es muy diferente sobre todo la constitución de la broca que se utiliza.
No todos los tornos pueden realizar todas estas operaciones que se indican, sino que eso depende del tipo de torno que se utilice y de los accesorios o equipamientos que tenga.
TORNEROS DE TORNO PARALELO
Operario de torno paralelo.
Los torneros tradicionales eran los que atendían a los tornos paralelos. Este oficio exige ciertas cualidades y conocimiento a sus profesionales, entre los que cabe citar:
una buena destreza en el manejo de los instrumentos de medición, especialmente pie de rey y micrómetro
conocer las características de mecanizado que tienen los distintos materiales
conocer bien las prestaciones de la máquina que manejan,
saber interpretar adecuadamente los planos de las piezas, etc.
Una excéntrica es una pieza que tiene dos o más cilindros con distintos centros o ejes de simetría, tal y como ocurre con los cigüeñales de motor, o los ejes de levas. Una excéntrica es un cuerpo de revolución y por tanto el mecanizado se realiza en un torno. Para mecanizar una excéntrica es necesario primero realizar los puntos de centraje de los diferentes ejes excéntricos en los extremos de la pieza que se fijará entre puntos.
12. Mecanizado de espirales
Una espiral es una rosca tallada en un disco plano y mecanizada en un torno, mediante el desplazamiento oportuno del carro transversal. Para ello se debe calcular la transmisión que se pondrá entre el cabezal y el husillo de avance del carro transversal de acuerdo al paso de la rosca espiral. Es una operación poco común en el torneado. Ejemplo de rosca espiral es la que tienen en su interior los platos de garras de los tornos, la cual permite la apertura y cierre de las garras.
13. Taladrado
Contrapunto para taladrados.
Muchas piezas que son torneadas requieren ser taladradas con brocas en el centro de sus ejes de rotación. Para esta tarea se utilizan brocas normales, que se sujetan en el contrapunto en un portabrocas o directamente en el alojamiento del contrapunto si el diámetro es grande. Las condiciones tecnológicas del taladrado son las normales de acuerdo a las características del material y tipo de broca que se utilice. Mención aparte merecen los procesos de taladrado profundo donde el proceso ya es muy diferente sobre todo la constitución de la broca que se utiliza.
No todos los tornos pueden realizar todas estas operaciones que se indican, sino que eso depende del tipo de torno que se utilice y de los accesorios o equipamientos que tenga.
TORNEROS DE TORNO PARALELO
Operario de torno paralelo.
Los torneros tradicionales eran los que atendían a los tornos paralelos. Este oficio exige ciertas cualidades y conocimiento a sus profesionales, entre los que cabe citar:
una buena destreza en el manejo de los instrumentos de medición, especialmente pie de rey y micrómetro
conocer las características de mecanizado que tienen los distintos materiales
conocer bien las prestaciones de la máquina que manejan,
saber interpretar adecuadamente los planos de las piezas, etc.
NORMAS DE SEGURIDAD ENEL TORNO
Cuando se está trabajando en un torno, hay que observar una serie de requisitos para asegurarse de no tener ningún accidente que pudiese ocasionar cualquier pieza que fuese despedida del plato o la viruta si no sale bien cortada. Para ello la mayoría de tornos tienen una pantalla de protección. Pero también de suma importancia es el prevenir ser atrapado(a) por el movimiento rotacional de la máquina, por ejemplo por la ropa o por el cabello largo.
Normas de seguridad
1
Utilizar equipo de seguridad: gafas de seguridad, caretas, etc..
2
No utilizar ropa holgada o muy suelta. Se recomiendan las mangas cortas.
3
Utilizar ropa de algodón.
4
Utilizar calzado de seguridad.
5
Mantener el lugar siempre limpio.
6
Si se mecanizan piezas pesadas utilizar polipastos adecuados para cargar y descargar las piezas de la máquina.
7
Es preferible llevar el pelo corto. Si es largo no debe estar suelto sino recogido.
8
No vestir joyería, como collares, pulseras o anillos.
9
Siempre se deben conocer los controles y funcionamiento del torno. Se debe saber como detener su operación.
10
Es muy recomendable trabajar en un área bien iluminada que ayude al operador, pero la iluminación no debe ser excesiva para que no cause demasiado resplandor.
MECANIZADO TORRE DE AJEDREZ
BIBLIOGRAFIA
Biblioteca de Consulta Microsoft ® Encarta ® 2005. © 1993-2004 Microsoft Corporation. “El Torno”, Werner Schlayer, 1972.
"El torno”, Editorial Reverté mexicana, S.A., 1969.
"El torno”, Editorial Reverté mexicana, S.A., 1969.
Wikipedia Torno 2008.Millán Gómez, Simón (2006). Procedimientos de Mecanizado. Madrid: Editorial Paraninfo.
Sandvik Coromant (2006). Guía Técnica de Mecanizado. AB Sandvik Coromant 2005.10.
Larbáburu Arrizabalaga, Nicolás (2004). Máquinas. Prontuario. Técnicas máquinas herramientas.. Madrid: Thomson Editores.
Cruz Teruel, Francisco (2005). Control numérico y programación. Marcombo, Ediciones técnicas. Varios autores (1984). Enciclopedia de Ciencia y Técnica. Tomo13 Torno. Salvat Editores S.A
Sandvik Coromant (2006). Guía Técnica de Mecanizado. AB Sandvik Coromant 2005.10.
Larbáburu Arrizabalaga, Nicolás (2004). Máquinas. Prontuario. Técnicas máquinas herramientas.. Madrid: Thomson Editores.
Cruz Teruel, Francisco (2005). Control numérico y programación. Marcombo, Ediciones técnicas. Varios autores (1984). Enciclopedia de Ciencia y Técnica. Tomo13 Torno. Salvat Editores S.A